ð java-streams-api
Use when Java Streams API for functional-style data processing. Use when processing collections with streams.
Overview
Master Java's Streams API for functional-style operations on collections, enabling declarative data processing with operations like filter, map, and reduce.
Introduction to Streams
Streams provide a functional approach to processing collections of objects. Unlike collections, streams don't store elements - they convey elements from a source through a pipeline of operations.
Creating streams:
import java.util.Arrays;
import java.util.List;
import java.util.stream.Stream;
public class StreamCreation {
public static void main(String[] args) {
// From collection
List<String> list = Arrays.asList("a", "b", "c");
Stream<String> stream1 = list.stream();
// From array
String[] array = {"a", "b", "c"};
Stream<String> stream2 = Arrays.stream(array);
// Using Stream.of()
Stream<String> stream3 = Stream.of("a", "b", "c");
// Empty stream
Stream<String> stream4 = Stream.empty();
// Infinite stream with limit
Stream<Integer> stream5 = Stream.iterate(0, n -> n + 1)
.limit(10);
}
}
Intermediate Operations
Intermediate operations return a new stream and are lazy - they don't execute until a terminal operation is invoked.
filter() - Select elements:
import java.util.List;
import java.util.stream.Collectors;
public class FilterExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6, 7, 8);
// Filter even numbers
List<Integer> evenNumbers = numbers.stream()
.filter(n -> n % 2 == 0)
.collect(Collectors.toList());
// Result: [2, 4, 6, 8]
// Multiple filters can be chained
List<Integer> result = numbers.stream()
.filter(n -> n > 3)
.filter(n -> n < 7)
.collect(Collectors.toList());
// Result: [4, 5, 6]
}
}
map() - Transform elements:
public class MapExample {
public static void main(String[] args) {
List<String> words = List.of("hello", "world");
// Convert to uppercase
List<String> uppercase = words.stream()
.map(String::toUpperCase)
.collect(Collectors.toList());
// Result: ["HELLO", "WORLD"]
// Get string lengths
List<Integer> lengths = words.stream()
.map(String::length)
.collect(Collectors.toList());
// Result: [5, 5]
// Chain transformations
List<Integer> doubled = List.of(1, 2, 3).stream()
.map(n -> n * 2)
.collect(Collectors.toList());
// Result: [2, 4, 6]
}
}
flatMap() - Flatten nested structures:
public class FlatMapExample {
public static void main(String[] args) {
List<List<Integer>> nested = List.of(
List.of(1, 2),
List.of(3, 4),
List.of(5, 6)
);
// Flatten to single list
List<Integer> flattened = nested.stream()
.flatMap(List::stream)
.collect(Collectors.toList());
// Result: [1, 2, 3, 4, 5, 6]
// Split strings and flatten
List<String> sentences = List.of("hello world", "foo bar");
List<String> words = sentences.stream()
.flatMap(s -> Arrays.stream(s.split(" ")))
.collect(Collectors.toList());
// Result: ["hello", "world", "foo", "bar"]
}
}
distinct() and sorted():
public class DistinctSortedExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(5, 2, 8, 2, 1, 5, 3);
// Remove duplicates
List<Integer> distinct = numbers.stream()
.distinct()
.collect(Collectors.toList());
// Result: [5, 2, 8, 1, 3]
// Sort ascending
List<Integer> sorted = numbers.stream()
.sorted()
.collect(Collectors.toList());
// Result: [1, 2, 2, 3, 5, 5, 8]
// Sort descending
List<Integer> descending = numbers.stream()
.sorted((a, b) -> b - a)
.collect(Collectors.toList());
// Distinct and sorted
List<Integer> distinctSorted = numbers.stream()
.distinct()
.sorted()
.collect(Collectors.toList());
// Result: [1, 2, 3, 5, 8]
}
}
peek() - Debug or perform side effects:
public class PeekExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Debug stream pipeline
List<Integer> result = numbers.stream()
.peek(n -> System.out.println("Original: " + n))
.map(n -> n * 2)
.peek(n -> System.out.println("Doubled: " + n))
.filter(n -> n > 5)
.peek(n -> System.out.println("Filtered: " + n))
.collect(Collectors.toList());
}
}
Terminal Operations
Terminal operations produce a result or side effect and close the stream.
collect() - Gather results:
import java.util.stream.Collectors;
import java.util.Map;
import java.util.Set;
public class CollectExample {
public static void main(String[] args) {
List<String> words = List.of("apple", "banana", "cherry");
// To List
List<String> list = words.stream()
.collect(Collectors.toList());
// To Set
Set<String> set = words.stream()
.collect(Collectors.toSet());
// To Map
Map<String, Integer> map = words.stream()
.collect(Collectors.toMap(
w -> w, // Key
String::length // Value
));
// Result: {apple=5, banana=6, cherry=6}
// Joining strings
String joined = words.stream()
.collect(Collectors.joining(", "));
// Result: "apple, banana, cherry"
// Grouping by length
Map<Integer, List<String>> grouped = words.stream()
.collect(Collectors.groupingBy(String::length));
// Result: {5=[apple], 6=[banana, cherry]}
}
}
reduce() - Combine elements:
public class ReduceExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Sum with identity
int sum = numbers.stream()
.reduce(0, (a, b) -> a + b);
// Result: 15
// Product
int product = numbers.stream()
.reduce(1, (a, b) -> a * b);
// Result: 120
// Max value
Optional<Integer> max = numbers.stream()
.reduce((a, b) -> a > b ? a : b);
// Result: Optional[5]
// Using method reference
int sum2 = numbers.stream()
.reduce(0, Integer::sum);
// String concatenation
String concatenated = List.of("a", "b", "c").stream()
.reduce("", (a, b) -> a + b);
// Result: "abc"
}
}
forEach() and forEachOrdered():
public class ForEachExample {
public static void main(String[] args) {
List<String> words = List.of("hello", "world");
// Print each element
words.stream()
.forEach(System.out::println);
// Parallel stream with ordered iteration
words.parallelStream()
.forEachOrdered(System.out::println);
// With side effects (use cautiously)
List<String> results = new ArrayList<>();
words.stream()
.map(String::toUpperCase)
.forEach(results::add);
}
}
count(), anyMatch(), allMatch(), noneMatch():
public class MatchingExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Count elements
long count = numbers.stream()
.filter(n -> n > 2)
.count();
// Result: 3
// Check if any match
boolean hasEven = numbers.stream()
.anyMatch(n -> n % 2 == 0);
// Result: true
// Check if all match
boolean allPositive = numbers.stream()
.allMatch(n -> n > 0);
// Result: true
// Check if none match
boolean noNegative = numbers.stream()
.noneMatch(n -> n < 0);
// Result: true
}
}
findFirst() and findAny():
public class FindExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Find first element
Optional<Integer> first = numbers.stream()
.filter(n -> n > 2)
.findFirst();
// Result: Optional[3]
// Find any (useful in parallel streams)
Optional<Integer> any = numbers.parallelStream()
.filter(n -> n > 2)
.findAny();
// Result: Optional[3] or Optional[4] or Optional[5]
// Handle empty result
Integer value = numbers.stream()
.filter(n -> n > 10)
.findFirst()
.orElse(-1);
// Result: -1
}
}
Advanced Collectors
Partitioning and grouping:
public class AdvancedCollectors {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6);
// Partition by predicate
Map<Boolean, List<Integer>> partitioned = numbers.stream()
.collect(Collectors.partitioningBy(n -> n % 2 == 0));
// Result: {false=[1,3,5], true=[2,4,6]}
// Group by with counting
Map<Integer, Long> lengthCounts = List.of("a", "bb", "ccc").stream()
.collect(Collectors.groupingBy(
String::length,
Collectors.counting()
));
// Result: {1=1, 2=1, 3=1}
// Downstream collectors
Map<Integer, List<String>> grouped =
List.of("apple", "apricot", "banana").stream()
.collect(Collectors.groupingBy(
String::length,
Collectors.mapping(
String::toUpperCase,
Collectors.toList()
)
));
// Result: {5=[APPLE], 6=[BANANA], 7=[APRICOT]}
}
}
Statistics collectors:
import java.util.IntSummaryStatistics;
import java.util.stream.Collectors;
public class StatisticsExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5);
// Summary statistics
IntSummaryStatistics stats = numbers.stream()
.collect(Collectors.summarizingInt(Integer::intValue));
System.out.println("Count: " + stats.getCount()); // 5
System.out.println("Sum: " + stats.getSum()); // 15
System.out.println("Min: " + stats.getMin()); // 1
System.out.println("Max: " + stats.getMax()); // 5
System.out.println("Average: " + stats.getAverage()); // 3.0
// Averaging
double average = numbers.stream()
.collect(Collectors.averagingInt(Integer::intValue));
// Result: 3.0
}
}
Parallel Streams
Parallel streams automatically partition data and process in parallel.
Using parallel streams:
public class ParallelStreamExample {
public static void main(String[] args) {
List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6, 7, 8);
// Convert to parallel stream
int sum = numbers.parallelStream()
.filter(n -> n % 2 == 0)
.mapToInt(Integer::intValue)
.sum();
// From sequential to parallel
long count = numbers.stream()
.parallel()
.filter(n -> n > 3)
.count();
// Check if parallel
boolean isParallel = numbers.parallelStream().isParallel();
// Result: true
// Back to sequential
List<Integer> result = numbers.parallelStream()
.sequential()
.collect(Collectors.toList());
}
}
Performance considerations:
import java.util.stream.IntStream;
public class ParallelPerformance {
public static void main(String[] args) {
// Small dataset - sequential is faster
List<Integer> small = IntStream.range(0, 100)
.boxed()
.collect(Collectors.toList());
// Large dataset - parallel may be faster
List<Integer> large = IntStream.range(0, 1_000_000)
.boxed()
.collect(Collectors.toList());
// Sequential
long start = System.nanoTime();
long sum1 = large.stream()
.mapToLong(Integer::longValue)
.sum();
long sequential = System.nanoTime() - start;
// Parallel
start = System.nanoTime();
long sum2 = large.parallelStream()
.mapToLong(Integer::longValue)
.sum();
long parallel = System.nanoTime() - start;
System.out.println("Sequential: " + sequential);
System.out.println("Parallel: " + parallel);
}
}
Primitive Streams
Specialized streams for primitive types avoid boxing overhead.
IntStream, LongStream, DoubleStream:
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.DoubleStream;
public class PrimitiveStreams {
public static void main(String[] args) {
// IntStream range
IntStream.range(1, 5)
.forEach(System.out::println); // 1, 2, 3, 4
// IntStream rangeClosed (inclusive)
IntStream.rangeClosed(1, 5)
.forEach(System.out::println); // 1, 2, 3, 4, 5
// Sum of IntStream
int sum = IntStream.of(1, 2, 3, 4, 5).sum();
// Result: 15
// Average
double avg = IntStream.of(1, 2, 3, 4, 5)
.average()
.orElse(0.0);
// Result: 3.0
// mapToInt to avoid boxing
int total = List.of(1, 2, 3, 4, 5).stream()
.mapToInt(Integer::intValue)
.sum();
// Generate random numbers
DoubleStream.generate(Math::random)
.limit(5)
.forEach(System.out::println);
}
}
Real-World Examples
Processing business objects:
class Employee {
private String name;
private String department;
private double salary;
public Employee(String name, String department, double salary) {
this.name = name;
this.department = department;
this.salary = salary;
}
// Getters
public String getName() { return name; }
public String getDepartment() { return department; }
public double getSalary() { return salary; }
}
public class EmployeeProcessing {
public static void main(String[] args) {
List<Employee> employees = List.of(
new Employee("Alice", "Engineering", 80000),
new Employee("Bob", "Engineering", 90000),
new Employee("Charlie", "Sales", 70000),
new Employee("Diana", "Sales", 75000)
);
// Average salary by department
Map<String, Double> avgSalaryByDept = employees.stream()
.collect(Collectors.groupingBy(
Employee::getDepartment,
Collectors.averagingDouble(Employee::getSalary)
));
// Result: {Engineering=85000.0, Sales=72500.0}
// Highest paid employee
Optional<Employee> highestPaid = employees.stream()
.max((e1, e2) -> Double.compare(e1.getSalary(),
e2.getSalary()));
// Total salary by department
Map<String, Double> totalByDept = employees.stream()
.collect(Collectors.groupingBy(
Employee::getDepartment,
Collectors.summingDouble(Employee::getSalary)
));
// Employees earning over 75k
List<String> highEarners = employees.stream()
.filter(e -> e.getSalary() > 75000)
.map(Employee::getName)
.collect(Collectors.toList());
}
}
File processing example:
import java.nio.file.Files;
import java.nio.file.Paths;
import java.io.IOException;
public class FileProcessing {
public static void main(String[] args) throws IOException {
// Read file lines as stream
Files.lines(Paths.get("data.txt"))
.filter(line -> !line.isEmpty())
.map(String::trim)
.forEach(System.out::println);
// Count words in file
long wordCount = Files.lines(Paths.get("data.txt"))
.flatMap(line -> Arrays.stream(line.split("\\s+")))
.count();
// Find unique words
Set<String> uniqueWords = Files.lines(Paths.get("data.txt"))
.flatMap(line -> Arrays.stream(line.split("\\s+")))
.map(String::toLowerCase)
.collect(Collectors.toSet());
}
}
When to Use This Skill
Use java-streams-api when you need to:
- Process collections with functional-style operations
- Filter, map, or transform data declaratively
- Aggregate or reduce collections to single values
- Group or partition data by criteria
- Chain multiple data transformations
- Process large datasets in parallel
- Write more readable collection processing code
- Avoid explicit loops and mutable state
- Perform lazy evaluation of operations
- Work with infinite sequences efficiently
Best Practices
- Use method references when possible for readability
- Avoid side effects in stream operations
- Close streams from I/O sources (Files.lines, etc.)
- Prefer collect() over forEach() for accumulation
- Use primitive streams to avoid boxing overhead
- Keep stream pipelines readable with proper formatting
- Use parallel streams only for large datasets
- Don't reuse streams - they're one-time use
- Prefer Optional over null checks in results
- Use Collectors factory methods for common operations
Common Pitfalls
- Reusing streams after terminal operation (throws exception)
- Modifying source collection during stream processing
- Using parallel streams for small datasets (overhead cost)
- Side effects in stateless operations (unpredictable results)
- Not handling Optional results properly
- Excessive chaining making code unreadable
- Forgetting to close streams from I/O sources
- Using forEach() when collect() is more appropriate
- Not considering thread safety in parallel streams
- Performance issues from unnecessary boxing/unboxing